4 research outputs found

    Evolving and sustaining ocean best practices and standards for the next decade

    Get PDF
    The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet's ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into "Ocean Best Practices." While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come

    Formation of brominated organic compounds and molecular transformations in dissolved organic matter (DOM) after ballast water treatment with sodium dichloroisocyanurate dihydrate (DICD).

    No full text
    Estuarine water treated with a ballast water management system (BWMS) using a solution of dissolved dichloroisocyanurate dihydrate (DICD) resulted in the formation of newly described brominated disinfection by-products (Br-DBPs). Analysis of dissolved organic matter (DOM) in untreated water with ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) identified 3897 m/z ions and their exact molecular formulas. After DICD treatment, a total of 213 halogenated molecular ions with relative abundance of at least 1% were assigned and confirmed using isotope simulation. Halogenated ions were assigned in four DBP elemental groups including CHOBr (180), CHONBr (13), CHOCl (16), and CHOBrCl (4). Forty-nine of the 197 brominated formulas have not been previously reported. We also were able to tentatively assign possible structures to the formula C3Br3N2 due to very limited isomeric possibilities. The tentatively assigned compound found at 6.4% relative abundance was identified as either tribromoimidazole or tribromopyrazole. Our results show the formation of complex halogenated DBPs that are formed in the treatment of water with a novel BWMS that employs granular DICD as a biocide. The toxicological and mutagenic properties as well as the fate of these newly identified brominated DBPs are unknown

    Can Advances in Science and Technology Prevent Global Warming?

    No full text
    climate change mitigation, carbon emission reductions, carbon sequestration, economic growth, energy efficiency, Kaya equation, nuclear energy, population stabilization, renewable energy,
    corecore